Scheer Report - Was steckt dahinter Teil 10

Scheer Report - Was steckt dahinter Teil 10

Scheer Report - Was steckt dahinter Teil 10

Hallo Liebe Leser, 

Heute kommt derzehnte Teil der Anmerkungen zum Scheer Report. Also die Dinge die mir zum Scheer Report aufgefallen ist und welche man als Anregung für eine Mail an die Abgeordneten mitnehmen kann.
 
Vorab liste ich Euch wie schon im vorigen Teil alle Artikel dieser Serie auf:
 

Wie auch im Teil vorher werde ich mich nur auf die Bereiche im Scheer Report beschränken, welche nicht explicit in den vorigen Artikeln behandelt wurden, es sei denn ich habe neue Anmerkungen dazu gefunden. Daher fangen wir auch mit Seite 31 des Scheer Reportes an.
The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, and tobacco alkaloids in electronic cigarette aerosols vary greatly (Cheng, 2014), depending on several factors, including the e-liquid contents, puffing rate, type of device, and the battery voltage or heating power (Kim, 2016; US-NAS-26 2018).

Second-hand exposure
Harmful components are partially retained by users of electronic cigarettes after inhalation. Because electronic cigarettes are only active when users take a puff, electronic cigarettes do not continue to smoulder between puffs. Therefore, electronic cigarettes do not emit harmful compounds when no puff is being taken, in contrast to tobacco cigarettes. Nevertheless, non-users may be exposed to exhaled air following a puff.

In a recent study, the TackSHS Survey (Amalia et al., 2019), country-specific weekly prevalence (%) and duration (minutes/day) of electronic cigarette second-hand aerosol (SHA) exposure in selected indoor settings was investigated in 12 European countries. Overall, 16.0% (4.3-29.6%) of electronic cigarette non-users were exposed to SHA in any indoor setting at least weekly. The median duration of SHA exposure among those who were exposed was 43 minutes/day, range 0 – 120 minutes/day.

Hess et al. (2016) and Abidin et al. (2017) systematically reviewed 16 and 4 studies,  respectively, on the composition of indoor air analysed for components of exhaled air from electronic cigarette users and compared it with background levels. The exhaled air contained elevated levels of particulate matter, nicotine, glycerol, propylene glycol, formaldehyde and acetaldehyde, VOCs and metals. Cotinine was elevated in saliva, urine and serum. Other studies reviewed by US-NAS (2018) confirm these findings. In one of the studies reviewed, Schober et al. (2014) reported an increase of PAHs over the control level  in indoor air, established one day before electronic cigarette use. No other reports were found on production of PAHs in inhaled or exhaled aerosols except a recent publication that detected very low levels in indoor air, slightly elevated over background (Drooge et al., 52 2019).
Carbonyl compounds
Relevant oxidation products related to the use of electronic cigarettes are formaldehyde, acetaldehyde and acrolein. Formaldehyde is of high chemical reactivity, causing local irritation or corrosion at exposed epithelia, acute and chronic toxicity and has genotoxic properties. At concentrations above 0.1 ppm in air formaldehyde can irritate the eyes and mucous membranes in humans. There is also convincing evidence for skin sensitisation by the active substance. Formaldehyde interacts with protein, DNA and RNA in vitro. Formation of DNA-protein links is thought to lead to clastogenic effects. In long‐term experiments with rats exposed by inhalation, formaldehyde caused tumours in the epithelium of the nasal mucosa. Eczema and changes in lung function have been observed at 0.6 to 1.9 ppm in  humans (ATSDR, 2010; ECHA, 2017). The occupational exposure limits recommended by the SCOEL are 0.3 ppm (0.37 mg/m3) for long term and 0.6 ppm (0.74 mg/m3) for short term exposure. National values for occupational exposure limits vary from 2 ppm to 0.12 44 ppm (ECHA, 2019).

Acetaldehyde is irritant to skin, eyes, mucous membranes, and respiratory tract. Symptoms of exposure include nausea, vomiting, and headache but also drowsiness, delirium, hallucinations. The perception threshold for acetaldehyde in air is in the range between 0.07 49 and 0.25 ppm. In rats, after chronic inhalation exposure, acetaldehyde leads to adenocarcinoma of the olfactory epithelium (750 ml/m3) and squamous cell carcinoma of the respiratory epithelium of the nasal mucosa (1500 ml/m3) and, in hamsters, to tumors of the nose and larynx. Acetaldehyde is genotoxic in vitro and in vivo. SCE, DNA adducts, DNA crosslinks and mutations in mammalian cells without metabolic activation are observed in 54 vitro. Acetaldehyde has also been shown to be clastogenic in vivo. In mice, acetaldehyde induces micronuclei in the bone marrow, so systemic availability can be assumed. The occupational exposure limit in Germany is set at ppm (91 mg/m3) (MAK, 2008). 
SCHEER Preliminary Opinion on electronic cigarettes

Inhaled acrolein is highly toxic. It is irritating to the upper respiratory tract even at low concentrations. Its odour threshold is 0.16 ppm. In subchronic and chronic inhalation studies on various species, irrespective of the concentration, irritative effects on the respiratory tract, predominantly on the nose, up to hyper‐ and metaplastic changes on the nasal epithelium occur. Direct contact with liquid acrolein causes rapid and severe eye and skin irritation or burns. In experiments with volunteers, acrolein is irritating to the eyes at 0.15 ml/m3. Acrolein reacts with DNA bases in vitro to form cyclic adducts.  Cyclophosphamide, from which acrolein and other alkylating metabolites are formed, causes  in vivo DNA adducts. In vitro, acrolein has a direct genotoxic effect in various test systems. Mutations were caused in Drosophila both in germ cells and in somatic cells. Two in vivo studies on mutagenicity and cytogenetics in rats were negative. Carcinogenicity studies with dermal, inhalation and oral administration to hamsters, rats and mice showed no evidence of a carcinogenic effect. Acrolein is also thought to be involved in the development of  bladder tumors (MAK, 1997). For acrolein a European occupational exposure limit has been set at 0.02 ppm (0.05 mg/m3) in Commission Directive (EU) 2017/164.
 
Flavourings 

Flavouring agents are frequently used as components of e-liquids (table 2) and are present in the aerosol as well. Most of them are listed as generally recognized as safe (GRAS) by the FDA and approved by EFSA as food additives. However, as said, their toxicity after inhalation, the major route of exposure for electronic cigarette users, is largely untested. It has been reported that they may be potentially harmful (Zare et al., 2018): indeed when reviewing the health impact of flavour in 7 studies, several e-liquids resulted as potentially allergenic (Hutzler et al., 2014). Most importantly, other can cause airway resistance (Pisinger and Dossing, 2014) and respiratory irritation (Tierney et al., 2016). 32

Besides possible toxic effects after inhalation, these chemicals may confer a characterising flavour to the e-liquid meaning a clearly noticeable smell or taste as for maltol, menthol or vanillin, thus contributing to attractiveness of electronic cigarettes. Flavourings can stimulate electronic cigarette use, especially among vulnerable groups such as non-smoking adolescents, thereby increasing exposure to potentially toxic ingredients. Indeed, the flavours by providing a specific and standardised taste, makes an e-liquid unique and recognisable among the large variety of available brands, thus binding the consumer (Havermans et al., 2019). This was confirmed by a survey conducted in 2017 and related to  ~20 000 e-liquids marketed in the Netherlands, identifying 245 unique flavour descriptions, reflecting flavour preference of electronic cigarette users (Havermans et al., 2019).

Addictiveness is another possible negative effect associated to electronic cigarette use to  which the composition of e-liquid can contribute. Indeed, it can be achieved, for example, by adding chemicals increasing the bioavailability of nicotine, altering the pH of the liquid or facilitating the inhalation, as in the case of additives with local anaesthetic effects such as menthol.

Menthol is a multifunctional additive. It is an effective anaesthetic, antitussive agent that may increase the sensation of airflow and inhibit respiratory rate, thereby allowing increased lung exposure to nicotine and other e-liquid ingredients. It may increase the absorption and lung permeability of aerosol, thereby increasing nicotine uptake while decreasing the irritation from nicotine. This action may increase the likelihood of nicotine addiction in adolescents and young adults who experiment electronic cigarettes and make it more difficult to quit (SCENIHR, 2016). 

SCHEER Preliminary Opinion on electronic cigarettes

For the toxicological features of the most frequently used flavours (Vanillin, Ethyl maltol,  Ethyl Butyrate) as well as for Maltol and Menthol it is possible to refer to SCENIHR opinion  Tobacco additives  (2016).
 
Ja ich weiss. Wieder mal verdammmt viel Text den wir hier heute bearbeiten. Aber in diesem Text steckt auch wieder verdammt viel Zündstoff.
 The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, and tobacco alkaloids in electronic cigarette aerosols vary greatly (Cheng, 2014), depending on several factors, including the e-liquid contents, puffing rate, type of device, and the battery voltage or heating power (Kim, 2016; US-NAS-26 2018).
Na Gott sei Dank, ist dem so. Das ist ein Erfolgsmodell, warum die Raucherzahlen sinken.
 
Second-hand exposure
Harmful components are partially retained by users of electronic cigarettes after inhalation. Because electronic cigarettes are only active when users take a puff, electronic cigarettes do not continue to smoulder between puffs. Therefore, electronic cigarettes do not emit harmful compounds when no puff is being taken, in contrast to tobacco cigarettes. Nevertheless, non-users may be exposed to exhaled air following a puff.

In a recent study, the TackSHS Survey (Amalia et al., 2019), country-specific weekly prevalence (%) and duration (minutes/day) of electronic cigarette second-hand aerosol (SHA) exposure in selected indoor settings was investigated in 12 European countries. Overall, 16.0% (4.3-29.6%) of electronic cigarette non-users were exposed to SHA in any indoor setting at least weekly. The median duration of SHA exposure among those who were exposed was 43 minutes/day, range 0 – 120 minutes/day.

Hess et al. (2016) and Abidin et al. (2017) systematically reviewed 16 and 4 studies,  respectively, on the composition of indoor air analysed for components of exhaled air from electronic cigarette users and compared it with background levels. The exhaled air contained elevated levels of particulate matter, nicotine, glycerol, propylene glycol, formaldehyde and acetaldehyde, VOCs and metals. Cotinine was elevated in saliva, urine and serum. Other studies reviewed by US-NAS (2018) confirm these findings. In one of the studies reviewed, Schober et al. (2014) reported an increase of PAHs over the control level  in indoor air, established one day before electronic cigarette use. No other reports were found on production of PAHs in inhaled or exhaled aerosols except a recent publication that detected very low levels in indoor air, slightly elevated over background (Drooge et al., 52 2019).
Diesen ganzen Absatz kann man auch in Kurzform abhaken. Die Raumluft in einem Raum von in dem gedampft wird, weisst kaum signifikante Veränderunderungen zu der Raumluft in einem Raum in dem nicht gedampft wird auf. )9 )17
SCHEER Preliminary Opinion on electronic cigarettes

Inhaled acrolein is highly toxic. It is irritating to the upper respiratory tract even at low concentrations. Its odour threshold is 0.16 ppm. In subchronic and chronic inhalation studies on various species, irrespective of the concentration, irritative effects on the respiratory tract, predominantly on the nose, up to hyper‐ and metaplastic changes on the nasal epithelium occur. Direct contact with liquid acrolein causes rapid and severe eye and skin irritation or burns. In experiments with volunteers, acrolein is irritating to the eyes at 0.15 ml/m3. Acrolein reacts with DNA bases in vitro to form cyclic adducts.  Cyclophosphamide, from which acrolein and other alkylating metabolites are formed, causes  in vivo DNA adducts. In vitro, acrolein has a direct genotoxic effect in various test systems. Mutations were caused in Drosophila both in germ cells and in somatic cells. Two in vivo studies on mutagenicity and cytogenetics in rats were negative. Carcinogenicity studies with dermal, inhalation and oral administration to hamsters, rats and mice showed no evidence of a carcinogenic effect. Acrolein is also thought to be involved in the development of  bladder tumors (MAK, 1997). For acrolein a European occupational exposure limit has been set at 0.02 ppm (0.05 mg/m3) in Commission Directive (EU) 2017/164.
 
 Auf Acrolein bin ich schon in den vorigen Artikeln dieser Serie eingegangen, das Thema muss hier nicht weiter erläutert werden. Zusätzlich kann ich als Informationsquelle noch mal den Artikel Acrolein- wie relevant ist es für das Dampfen empfehlen. Gerade der Passus zur Entstehungstemperatur ist hier sehr hilfreich um die Diskussion einzuordnen.
 
Besides possible toxic effects after inhalation, these chemicals may confer a characterising flavour to the e-liquid meaning a clearly noticeable smell or taste as for maltol, menthol or vanillin, thus contributing to attractiveness of electronic cigarettes. Flavourings can stimulate electronic cigarette use, especially among vulnerable groups such as non-smoking adolescents, thereby increasing exposure to potentially toxic ingredients. Indeed, the flavours by providing a specific and standardised taste, makes an e-liquid unique and recognisable among the large variety of available brands, thus binding the consumer (Havermans et al., 2019). This was confirmed by a survey conducted in 2017 and related to ~20 000 e-liquids marketed in the Netherlands, identifying 245 unique flavour descriptions, reflecting flavour preference of electronic cigarette users (Havermans et al., 2019). 
 
 Addictiveness is another possible negative effect associated to electronic cigarette use to  which the composition of e-liquid can contribute. Indeed, it can be achieved, for example, by adding chemicals increasing the bioavailability of nicotine, altering the pH of the liquid or facilitating the inhalation, as in the case of additives with local anaesthetic effects such as menthol.
Menthol is a multifunctional additive. It is an effective anaesthetic, antitussive agent that may increase the sensation of airflow and inhibit respiratory rate, thereby allowing increased lung exposure to nicotine and other e-liquid ingredients. It may increase the absorption and lung permeability of aerosol, thereby increasing nicotine uptake while decreasing the irritation from nicotine. This action may increase the likelihood of nicotine addiction in adolescents and young adults who experiment electronic cigarettes and make it more difficult to quit (SCENIHR, 2016).
Nicht schon wieder Jugendschutz als vorgeschobenes Argument. Wozu gibt es Jugendschutzgesetze? Wenn Jugendliche diese Produkte weder besitzen noch erwerben dürfen, ist der Drops doch gelutscht. Diese Passage hat nur ein Ziel, die Jugendschützer gegen das Dampfen ein zustellen. Korrektur ab dem zweiten Schritt will man noch an die WHO und Anti-Rauchnahen Interessensverbände rantreten um hier mit denen Kanonenfutter für einen Flavour-Bann zu geben. Hinzu kommt die Fragestellung warum man sich nicht auf populäre Geschmacksrichtungen denn darauf das es sich um spezielle Geschmacksrichtungen für Jugendliche versteift. Nachtigall ick hör Dir trapsen.
 
 SCHEER Preliminary Opinion on electronic cigarettes

For the toxicological features of the most frequently used flavours (Vanillin, Ethyl maltol,  Ethyl Butyrate) as well as for Maltol and Menthol it is possible to refer to SCENIHR opinion  Tobacco additives  (2016).

 Dieser kleine aber feine Absatz hat es echt in sich. In ihm steckt der ganze Zündstoff, der mich mein Frühstück nahezu wieder hochkommen lässt. Denn hier gibt man der EU die scharfe Waffe für einen Flavour-Bann von Aromen mit. Ich habe mir die Freiheit genommen die Studie auf die sich der Scheer Report bezieht direkt zu verlinken. Nach Durchsicht muss ich sagen die hat es in sich. Vanille-Aromen und Menthol-Aromen werden es in Zukunft im Dampferbereich schwer haben. Denn sie steigern die Atrraktivität und die soll uns Dampfern ja verleidet werden. Genauso wie damals bei den Rauchern, (hierzu empfehle ich meinen Artikel: Aromenverbote in Liquids - Da war doch schon mal was beim Tabak) 
 

Fazit

Der Scheer Report arbeitet hier mit sehr interessanten Vernetzungen von Studien und Informationen um Meta-Infos an die Lobbyisten und deren die unterstützenden Politiker zu verteilen. Dieser Report ist so neutral wie der Stürmer einer Fussballmannschaft. Alles was man bis hier findet ist gelinde gesagt Lobbisten-Romanschreiberei.

 
in diesem Sinne
Seid Achtsam 
Facebookseite Like
Geteilt mit Facebook

Geteilt mit Twitter




Quellen

  1. Public Consultation on E-ciagrettes
    https://ec.europa.eu/health/scientific_committees/consultations/public_consultations/scheer_consultation_10_en
  2. Sheer Report
    https://ec.europa.eu/health/sites/health/files/scientific_committees/scheer/docs/scheer_o_017.pdf
  3. Annex (Anhang mit Regeln zur Erstellung des Reports)
    https://ec.europa.eu/health/sites/health/files/scientific_committees/docs/rules_procedure_2016_en.pdf 
  4.  https://de.wikipedia.org/wiki/Weltgesundheitsorganisation
  5. Sicherheitsdatenblatt pflanzliches Glycerin (Nachweis PH-Wert)  file:///C:/Temp/7301.pdf
  6. Sicherheitsdatenblatt Propylenglykol (Nachweis PH-Wert)  https://www.wigol.de/sites/default/files/download/datasheets/001526.PDF
  7.  https://de.wikipedia.org/wiki/PH-Wert
  8.  https://de.wikipedia.org/wiki/Stickoxide
  9.  https://www.cdc.gov/niosh/hhe/reports/pdfs/2015-0107-3279.pdf
  10.  https://de.wikipedia.org/wiki/Fagerstr%C3%B6m-Test#
  11.  http://www.openscienceonline.com/journal/archive2?journalId=718&paperId=4979
  12.  https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177718
  13.  https://www.cdc.gov/niosh/hhe/reports/pdfs/2015-0107-3279.pdf
  14.  https://harmreductionjournal.biomedcentral.com/articles/10.1186/s12954-019-0318-2
  15.  https://www.mdpi.com/1660-4601/14/9/973/htm
  16.  file:///C:/Temp/ijerph-14-00973-v2.pdf
  17.  https://www.mdpi.com/1660-4601/12/5/4889

 

     Bildquelle: 

  1.  https://europa.eu/european-union/sites/europaeu/files/docs/body/flag_yellow_high.jpg

 

 

Meistgelesen

DSA Rezension: Die Philealasson-Saga

Das Versagen des Erziehungsberechtigten - oder das Konzept Nanny State in der Krise

Der zweite Arzt dem kein Dampfer traut

Einfach Mal Selbst Gedacht nun auch audiovisuell

DSA-Buchrezension: Kaiser Retos Waffenkammer

BVRA

Logo von https://www.bvra.info